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Adaptive Control Applied to Momentum Unloading Using the
Low Earth Orbital Environment
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An adaptive control technique for the unloading of spacecraft angular momentum is presented. The technique
employs model reference adaptive control theory with Lyapunov stability analysis to synthesize a controller
using multiple environmental sources in combination for unloading. Simulation studies are presented that
employ magnetic, gravity gradient, and aerodynamic torques in a three-way controller. It is shown that
momentum is contained within a dead zone introduced for disturbance compensation that is well below
reasonable reaction wheel saturation limits for two model spacecraft of much different mass properties.

Introduction

M ANY momentum management schemes employ the in-
teraction of the spacecraft with the low Earth orbit

environment to generate the needed unloading torques. This
study presents a scheme for spacecraft momentum manage-
ment that uses the three environmental sources of magnetics,
gravity gradient, and aerodynamics. It is directed at three-axis
stabilized vehicles possessing angular momentum storage de-
vices such as reaction wheels. The scheme employs an adaptive
control approach to the problem.

Gravity gradient torques have been suggested for the devel-
opment of a torque equilibrium attitude (TEA) control scheme
for the proposed NASA Space Station.1'2 Magnetic torquing
applied to desaturation of momentum storage devices has
been implemented on, or is proposed for, many spacecraft
programs. It usually involves the cross product unloading law,
the minimum energy desaturation law, or more simple bang-
bang laws.3'4

The application of adaptive control by means of augment-
ing the control system state with system parameters has not yet
been applied to momentum unloading. The concept of having
self-tuning system parameters is appealing when the external
perturbations affecting momentum unloading systems are
considered, such as geomagnetic storms and atmospheric den-
sity variations. For an Earth-pointing spacecraft in a low
circular orbit, the combination of the three unloading meth-
ods employed in this study allows the ready accommodation
of the limitations of each method taken individually. For
example, gravity gradient unloading cannot reduce momen-
tum in the Earth-pointing direction, and magnetic unloading
cannot reduce momentum in the instantaneous magnetic field
direction. However, when they are used together, all three
momentum components can be reduced.

This study applies adaptive control in its model reference
form. Model reference adaptive control (MRAC) allows the
designer to choose an asymptotically stable reference model
whose behavior the output or state of the system is forced to

Presented as Paper 89-3472 at the AIAA Guidance, Navigation,
and Control Conference, Boston, MA, Aug. 14-16, 1989; received
Oct. 18, 1989; revision received Oct. 8, 1990; accepted for publication
Oct. 22, 1990. Copyright © 1991 by the American Institute of Aero-
nautics and Astronautics, Inc. All rights reserved.

*Member of Technical Staff, Space and Technology Group. Mem-
ber AIAA.

tAssistant Professor, Department of Mechanical Engineering.
Member AIAA.

follow. Porter and Tatnall5 derived such a system focusing on
control of the state. Since then, a large variety of work has
been published on model reference control of the system out-
put,6 analysis of adaptive parameter boundedness,7 and ro-
bustness issues.8

This paper is organized into five sections. The second sec-
tion covers the fundamental momentum unloading problem.
The adaptive unloading scheme of this study is presented in
the third section. The stability of the method is analyzed, and
its implementation in simulation is discussed for two model
spacecraft using combinations of magnetic, gravity gradient,
and aerodynamic unloading. Simulation results are presented
in the fourth section, and concluding remarks are presented
thereafter.

Momentum Unloading Problem
The approach taken for unloading control here is to con-

sider the momentum unloading control system (MUCS) con-
trol torques as perturbations to the attitude control system
(ACS), and vice versa (see Fig. 1). This design approach for
the two loops is often employed,9 justified by the difference in
band widths between ACS and MUCS. The attitude control
system has a time constant on the order of seconds to minutes;
the momentum control is on a scale of minutes or possibly
hours. In a three-axis stabilized, Earth-pointing spacecraft,
assuming perfect attitude control, total angular momentum
AJC equals the change in angular momentum of the reaction
wheels, A// in body frame.

Magnetic Unloading
A magnetic moment M generated via electromagnets on

board the spacecraft causes a torque TM given in body frame
by:

TM = MxB (1)

where B is the Earth's magnetic field vector.
We adopt a matrix notation in which a vector V = Vxf+

Vyj+ VZK is denoted by a column matrix V = [Vx Vy VZ]T.
Then Eq. (1) can be written as

TM = BM (2)

where M = [Mx My MJrand
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Earth Orbit Environment
(magnetic field, gravity field, upper atmosphere)

Fig. 1 Attitude and momentum unloading control systems.

Gravity Gradient Unloading
Perturbation torques arising from the effect of the Earth's

gravitational field on an asymmetrical spacecraft body may be
used to the ACS designer's advantage by incorporating them
into a momentum unloading scheme. Let us assume that the
Earth-pointing unit vector is aligned with the body z axis and
that the spacecraft attitude configuration is Earth pointing,
such that the attitude angles roll </>, pitch 6, and yaw \f/ are
small (± 10 deg) rotations from the orbit reference frame to
the spacecraft body frame. Then gravity gradient control
torque can be expressed as:

Aerodynamic

TGz=0 (3)

where /z is the Earth gravitational constant; Rc is the distance
from the Earth's center to spacecraft's center of mass; IXX) Iyy,
and Izz are the body principal moments of inertia; and <t> and
6 are control inputs. In matrix notation, Eq. (3) can be written
as

(4)

where $ = [</> 0]rand

G =
'zz *-yy

0
0 0

Aerodynamic Unloading
Aerodynamic drag on an orbiting spacecraft is a significant

perturbation source at low Earth orbit. The aerodynamic
modeling employed here focuses on simplicity in light of the
concept validation emphasis of this study. It is assumed that
the incident atmospheric molecules impact the spacecraft
without reflection and lose their entire energy upon impact.
The shadowing of the flowfield of one part of the spacecraft
from another is not considered here. It is further assumed that
the component of drag due to the rotation of the spacecraft
can be ignored. These are common assumptions for control
design purposes.10

To apply aerodynamic torque to the unloading of momen-
tum, specific control surfaces on the spacecraft are employed.
It is assumed that these control surfaces have the characteris-
tics of flat plates, such as solar panels that might be designed

Spacecraft

Yaw

Fig. 2 Aerodynamic unloading paddle configuration.

to serve also as aerodynamic paddles. If there are n such
plates, then each plate / will have TV/ as a unit normal, and r/
can be taken as the vector from the spacecraft center of mass
to the center of pressure of plate /. Then the aerodynamic
torque arising from the n plates can be expressed in body
frame as

= - l-PA £ CDiAf cosa/r,
2 | _ / = 1 J

x v = T(cn)Ai (5)

Here a/ is angle of attack on control surface plate /, A{ is area
of plate /, CDi is drag coefficient of plate /, p is atmospheric
density, v is spacecraft velocity, v is unit vector in velocity
direction, and T(aj)Ai is the aerodynamic torque due to plate
/ . Linearizing about a/ = 0, Eq. (5) can be approximated for
small angles of attack by

TA = (6)

Expressed in this form, the plate angles of attack a/ are the
unloading control variables.

The aerodynamic paddle configuration employed in simula-
tion is shown in Fig. 2. We assume that the distance of each
paddle's center of pressure to the spacecraft's center of gravity
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Fig. 3 Adaptive momentum feedback loop.

is / = 10 m and the area of each paddle is A = 5 m2. The
assumption of a constant drag coefficient in the aerodynamic
torque given by Eq. (5) suggests the imposition of a constraint
limit on paddle angle fluctuation. A stop of ± 30 deg from the
angle set points is assumed for the paddle angles 71, 72, 7s. and
74. The set points are at an edge-on orientation toward the air
flow, which represents a turn angle of 90 deg. Carrying out the
partial derivatives of Eq. (6) for the paddle angles 7,-, i = 1, 4
depicted in Fig. 2 yields

TA = (7)

0 0 0
0 shrys 0

0

where F = [71 72 73 74]T and

A = (l/2)CDp(t)v2(t)A

General Form of Unloading Torques
All of the unloading torques discussed above have the fol-

lowing matrix form

7"1 _ /̂ "T f%\1 if — C 1 (6)

where U = M, G, or A, C is a coefficient matrix, and T is a
vector of control variables. The three mechanisms used for
momentum control are employed as follows. Magnetic un-
loading takes place by regulating the current through onboard
electromagnets. The generated magnetic dipole M is the con-
trol. Gravity gradient unloading occurs when the attitude off-
set angles roll </> and pitch 6 are controlled by reference inputs
commanded to the attitude control system (ACS). Aerody-
namic unloading is controlled by the rotation of paddle ap-
pendages through calculated angles y{, y2, 73, 74 to create a
desired drag torque. These paddles are considered dedicated to
the aerodynamic unloading control function in this study and
are postulated to have the orientation on the spacecraft body
shown in Fig. 2. The change in angular momentum with
respect to inertial frame due to Tv is given by

AJC,; =

where superscript /denotes vectors expressed in inertial frame.
An unloading control law seeks a torque Ta such that3

AJCr, = - A3C (10)

Adaptive Control Approach
The design of an MRAC scheme to control angular momen-

tum using external spacecraft torques must accommodate sev-
eral design issues: 1) the time varying nature of the external
torques, 2) the momentum bounds determined by wheel satu-
ration limits, 3) the boundedness of the adjusted parameters,
and 4) the presence of disturbances (which are assumed to
possess known bounds).

Porter and Tatnall5 describe a multivariable MRAC scheme
that is applicable to the momentum unloading problem but
lacks discussion on boundedness of the adjusted parameters or
performance in the presence of external disturbances. Peter-
son and Narendra11. present a bounded error MRAC scheme in
the presence of external disturbances. They apply a dead zone
method that accommodates aforementioned items 2-4. The
idea is to turn off parameter adaptation when the plant state
is within a dead zone surrounding the origin. Such a scheme
lends itself to a spacecraft onboard computer, which would
activate a simple on-off switch to implement the algorithm.
The dead zone method is chosen here for its simplicity and
effectiveness in this application. In this section, we discuss the
implementation of a dead zone procedure for the time varying
momentum unloading system.

Control Loop Configuration
The three-way MRAC unloading scheme in this study is

modeled as an adaptive feedback system shown in Fig. 3.
Controls M = [Mx My Mz]r, $ = [</> 6]T, and F = [7! 72 73
74]T generate torques TM, TG, and TA through environmental
interaction. They are regulated by matrix gains K_M = {kMij},
KG = {koij ) > and KA = (^AU)» applied to the reaction wheel
momentum vector H. Components of these matrix gains are
adjusted by the adaptation laws. The three control torques
and disturbance torque Td constitute the total torque T acting
on the spacecraft. Td represents the total environmental dis-
turbance torque together with the ACS torque, and addition-
ally it is assumed to include other unmodeled disturbance
effects. Under the assumption of perfect attitude control, all
of the angular momentum imparted to the spacecraft by the
resulting torque T is absorbed by the reaction wheels and
denoted by H. The total torque T obeys the dynamic equa-
tions

d7JC _ d'H
dt ~~ dt (H)

where [d7( )/dt] denotes differentiation with respect to inertial
frame. The integrator block in Fig. 3 that represents Eq. (11)
implies therefore the following: 1) transformation of T from
body frame to inertial frame to get T1, 2) integration of T1 to
get H1 according to Eq. (11), and 3) transformation of H1 to
body frame to get H = JC. In body frame, Eq. (11) can be
written as

where (') stands
frame, w = [cox o)y wj
with respect to inertial frame, and

(12)

for differentiation with respect to body
7' is the angular velocity of body frame

(9)

0 -
0 -
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Using Eqs. (2), (4), (7), and (12), we define the state equations
of the plant as (see Fig. 3)

BKM + GKG + AKA)H + Td (13)

The model dynamics, represented by the lower block of Fig. 3,
are given by

(14)

The constant matrix A_m, a design parameter, is chosen to be
a Hurwitz matrix resulting in an exponentially stable model
trajectory Hm(t). Hence, the plant state is to be controlled to
follow an exponentially decaying model state. The state error
e = H-Hm and plant state H are used to dynamically adjust
the gain matrices KM, KG, and K_A using an adaptive law.

Derivation of Adaptive Laws
Consider the dynamics of the system in Fig. 3 in terms of the

state error e :

(15)

The system equations given in Eq. (15) will be referred to as
the error system. We analyze the stability of this system using
the direct method of Lyapunov. Consider an augmented state
of the error equation, Eq. (15), to be [eT A7}7, where A is a
9 x 1 vector containing the elements of matrix (£ = ( a// ) given
by

a = - o + ##M + G^G + ̂  - A,
We choose as a Lyapunov function candidate

i = l y = l IJ IJ2 ~

(16)

(17)

where Vjj>QviJ. The matrix P is computed from the Lya-
punov equation

(18)

given the design choices of A_m and the constant Q = gr>0.
The Hurwitz character of A_m ensures that P is unique and
positive definite.

Differentiation of K yields

V = eTPe + eTPe + £ £ ^^
- - / = ^ = i

Expanding Eq. (19), we further obtain
3 3

yajj + 2hjeTPi)o

(19>

2e TPTd (20)

where hj is theyth component of the vector H and P/ is the /th
column of the matrix P. To assure stability (or boundedness)
in the sense of Lyapunov, we desire Eq. (20) to be at least
negative semidefinite. Thus we let

(21)

where 6,y = 2/V/, are redefined constants. Equation (21) is the
adaptive law of the system. Substituting Eq. (21) into Eq. (20)
produces the Lyapunov function derivative

r= -eTQe + 2eTPTd (22)

This stability analysis is carried out by first treating the system
of Eq. (15) as if it were unperturbed (had no Td term). Distur-

bance considerations are discussed in the next subsection.
Assuming Td = 0, Eq. (22) becomes

V= -eTQe (23)

The discussion that follows contains a number of results
that are stated here without proof. The proofs are given in
Burns12 and are based on the analyses of Yoshizawa,13 LaSalle
and Lefschetz,14 and others (see Burns12 for a complete refer-
ence list).

Consider the error system in Eq. (15) under the adaptive law
given in Eq. (21). Assume that Td = 0, i.e., no disturbances
are present. Then we have the following results:

Result 1: The equilibrium [eT A T\T = 0 is uniformly sta-
ble.

Result 2: The solutions of the error system are uniformly
bounded.

Result 3: The error component of the state e satisfies

lim e = 0
/— 00

Proof of result 3: Since e and the elements of CE are
bounded, Kis bounded from above [see Eq. (17)], as well as
from below, because K > 0. Hence

= V(t)~

which implies that

Hence

eTQedt= F(0) - V(t)

eTQedt= F(0) - F(oo)«x

(24)

(25)

(26)

Consider Eq. (15), with Td = 0. It is clear that H is bounded
because of the boundedness of e and the exponential stability
of Hm. Since A, e, and Am are bounded, this implies that e is
bounded, hence e is uniformly continuous. From this fact and
Eq. (26), we conclude that e(t)-+Q as f — oo. Q.E.D.

Results 1-3 thus establish that for the undisturbed system,
the adaptive parameters are uniformly bounded and the angu-
lar momentum H approaches the model Hm as time increases
under the adaptive control law o;// = - 6///z/erP/.

Consideration of Disturbances
It is important to extend the analysis of the previous subsec-

tion to account for the presence of the disturbance Td in the
adaptive system represented by Eq. (15) and Fig. 3. A dead
zone technique similar to the one described by Peterson and
Narendra11 is employed to develop adaptation laws accounting
for Td. The idea is to modify the adaptive law so that when the
trajectory of the state e falls within a preset region surround-
ing the origin, parameter adaptation is ceased. This added
feature prevents adaptation in a situation where the right side
of Eq. (22) may become positive, which would indicate stabil-
ity uncertainty of the error system.

The adaptive law given by Eq. (21) is modified to be the
following:

i, H e l l > 2 HP II A

<*u =
0, \\e II < 2 HP II A (27)

where D0 is an upper bound on the disturbances such that
D0> llrjlmax, and IIPII, and I IQI I / are the induced matrix
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norms of P and Q, respectively. The Lyapunov function con-
ditions are now the following:

1) K>0
2) F<0, \\e\\>2(\\P\\f>0/\\Q\\i)
These reduced Lyapunov function attributes result in less

stringent stability characteristics than the undisturbed system
analyzed in the previous subsection. However, the goals of
this application are to maintain subsaturation bounds on an-
gular momentum H and finite bounds on adaptive parameters
KM, K_G, and KA . To achieve these goals, we apply the con-
cepts of ultimate boundedness and practical stability discussed
by LaSalle and Lefschetz14 defined in the following.

Definition (Ultimate Boundedness)
A system x = F(t,x) is ultimately bounded if there is a b >0

such that corresponding to each solution x(t) of the system,
there is a T>0 with the property that \\x(t)\\<b for all t > T.

Definition (Practical Stability)
Given an unperturbed system x - F(x,t), t > 0 and a per-

turbed system x = F(x,t) + p(x,t), t > 0, where F(0,0 = 0 and
p(x,t) represents a perturbation. Given also a number <5 and
two sets Q and Q0» where Q is a closed and bounded set
containing the origin and Q0 is a subset of Q . Let P be the set
of all perturbations p satisfying \\p(x,t)\\ < 6 for all t > 0 and
all x. If for each initial state ATO, each p in P, and each t0 > 0,
the solutions to the perturbed system are in Q for all t > 0, the
origin is said to be practically stable.

Consider the error system in Eq. (15) with Td ^ 0 and an
adaptation law given by Eq. (27). Then applying the above
definitions we have the following results:

Result 4: The state [eT A7}7 of the error system is ulti-
mately bounded.

Result 5: The error system is practically stable.
Result 5 provides us with an upper bound for the solutions

of the adaptive momentum system which is a function of the
system disturbances and the physical characteristics of the
spacecraft. This analysis is further supported by an argument
about the behavior of the trajectories of the system given by
Eq. (15) as they pass in and out of the dead zone. We have
shown earlier that outside of the dead zone, V< 0. Thus Kis
nonincreasing, implying that the state [er A^Y is inhibited
from diverging from the origin [see Eq. (17)]. Inside the dead
zone, adaptation is switched off [Eq. (27)] indicating that (£
will not grow, and (by definition) e is confined to that region.
Thus e tends toward the dead zone region.

In summary, it is demonstrated that the perturbed adaptive
momentum unloading system represented by Eq. (15) and Fig.
3 is ultimately bounded and practically stable. As a result, we
can say that the reaction wheel momentum H remains
bounded and in the vicinity of the dead zone. The dead zone
can be thought of as an attractive set to the trajectory of H. It
serves as a region of nonadaptation to accommodate the pres-
ence of bounded disturbances and also as a region of periodic
momentum fluctuation in which we are not interested for the
practical purposes of unloading.

Implementation of Adaptive Law
In the following, we consider the case for which 12 is a

constant matrix. This is the case in inertial configurations, or
in circular orbits in Earth-pointing configuration when ne-
glecting Earth motion and nodal regression. Substituting Eq.
(16) into Eq. (21) and denoting ( • ) to mean "the matrix
whose elements are . . . , " we obtain the adaptation equation

where K_ is a 27-element column matrix containing kMij, kGij,
and itAij, U = 1, 2, 3; X is a sparse 9 x 27 matrix; and R is a
9-element vector containing all the terms of the right side of
Eq. (28). Since X is of rank 9, only 9 parameter derivatives of
27 total elements"are selected for adaptation; the remaining 18
elements are set to zero. The selection process, described in
detail in Burns,12 is driven by the requirement that all three
orthogonal directions in the spacecraft body frame be viable
for unloading by at least one of the three unloading sources
employed.

Design Parameters of the Adaptive System
Given the stability analysis of the previous subsections,

there exists a number of design parameters that are available
to fine tune the system for a particular spacecraft configura-
tion. These include the MR AC model dynamics matrix A_m>
the positive definite symmetric matrix Q, the system distur-
bance upper bound £>0, and the adaptive gains 6//.

The approach taken for selecting the design parameters is to
first choose DQ and Q. D0 is chosen to be at the maximum
possible absolute value that Td may physically attain. The
matrix Q is used to shape the speed or "strength" of the
closing of the error between H and Hm [see Eq. (22)]. Next
consult Eq. (27) to obtain the desired ratio I IP I I / / I IQI I / from
the desired size of the dead zone, which determines the matrix
P. The desired dead zone is sized to the magnitude of momen-
tum below which the fluctuations are not important, for ex-
ample one-fourth the saturation limit of wheel momentum H.
Then Eq. (18) can be employed to calculate the value of Am.
The choices of D0, Q, and Am thus provide influence over the
speed of control on e. The values of adaptive gains 6// are
chosen to influence the speed of adaptation of the parameter
matrices KM, KG, and KA.

Simulation Studies
System Models

The momentum unloading algorithms presented in this
study are validated via orbit simulation. The following models
are employed.

Magnetic Field Model
The magnetic model used for unloading algorithm verifica-

tion represents an undistorted, steady-state field that does not
account for temporal variations due to short period solar
activity (magnetic storms) or near-Earth anomalies. A tilted
dipole model is chosen for its simplicity and general accep-
tance for magnetic unloading algorithm design.12'15'16

Environmental Perturbation Torque Model
Environmental perturbation torques are dominated in low

Earth orbit by aerodynamic drag fluctuating on a cyclical
basis with the orbital period. Keeping with the simplicity of a
concept validation model, the following is chosen to represent
the perturbation torque (body coordinates):

Tabx = 0

(30)+ Sz

BKM + GKG + AKA = - BKM-AKA -

which can be written as

(28)

(29)

where o>0 is orbit rate and Ay, Az, Sy, Sz are constant coeffi-
cients whose values are determined by estimating aerodynamic
drag characteristics from previously established models de-
pending on the orbit being simulated.3'10 Due to the Earth-
pointing attitude assumption, Tabx - 0.

Atmospheric Density Model
The atmospheric density model employed for aerodynamic

torque control via paddles is a sinusoid which takes into
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Table 1 Properties of small spacecraft in simulation9

Principal moments of inertia, kg-m2

Ix 125
Iy 116
h 135

Reaction wheel saturation limits, N-m-s
Hxmax ± 5
Hymax ± 5
Hzmax ± 5

Magnetic torquer maximum moments, amp-m2

Mjnnax ± 50
Mymax ± 50
Mzmax ± 50

Table 2 Properties of large spacecraft (Gamma Ray
________Observatory) in simulation________

Principal moments of inertia, kg-m2

Ix 50,760
Iy 79,550
Iz 95,260

Reaction wheel saturation limits, N-m-s
tfjonax ± 200
Hymax ± 200
Hzmax ±200

Magnetic torquer maximum moments, amp-m2

AConax ± 1800
Mymax ± 1800
MOTax ± 1800
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Fig. 5 MR AC, small spacecraft: momentum.
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Fig. 4 Small spacecraft momentum without unloading. Fig. 6 MRAC, small spacecraft: adaptive parameters.

account the relative fluctuations from night side of the Earth
to day side.10'17 The density model is

p(t) = pa + PC (31)

where oj0 = spacecraft orbital rate. For maximum sunspot ac-
tivity17

 Pa = 4.34 x 10~12 kg/m3 and pc = 13.46 x 10~12 kg/m3.

Spacecraft Attitude Dynamics and Control Models
The spacecraft dynamics and control models are based on

the assumptions of Earth-pointing desired attitude and small

attitude angles and angle rates. These models establish the
attitude control loop of Fig. 1. The most common attitude
controller chosen in this type of problem is a proportional/
rate control law. This type of law is chosen, including uncou-
pling terms, similar to the controllers chosen by Junkins et al.9
and Shain and Spector.1 See Burns12 for a detailed description
of the attitude control law employed.

Spacecraft Orbit Simulation Configurations
The orbit simulations performed for validation of the mo-

mentum unloading algorithm of this study model a circular
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Fig. 8 MRAC, small spacecraft: attitude offset angle control com-
mands.

orbit of altitude 200 n.mi. and inclination 28.5 deg in the
Earth-pointing desired attitude. The unloading algorithm is
simulated in conjunction with two example spacecraft: a small
spacecraft,9 and a large spacecraft with the properties of the
NASA Gamma Ray Observatory (GRO). The principal mo-
ments of inertia, angular momentum saturation limits, and
magnetic torquer moment limits of the small and large space-
craft are summarized in Tables 1 and 2, respectively.

Simulation Results
Simulation plots given in this study are in spacecraft body

coordinates. For a near 90-min spacecraft orbit and a tilted
dipole magnetic field simulation model, the magnetic field in
spacecraft body coordinates is essentially periodic with a 24-h
period. Thus a 24-h simulation provides a complete picture of
the adaptive unloading system. The MRAC model Hm that is
tracked by wheel momentum H during adaptive unloading is
an exponentially decaying vector function whose dynamics are
given by Eq. (14). The choice of a diagonal matrix with
elements -0.001, -0.002, -0.003 for Am is assumed. The
initial conditions of Hm are set equal to the initial conditions
of H for the simulation.

-o 90

85

90

85

90

12 16
Time (hours)

85

8 12 16 20 24
Time (hours)

90

85

8 12 16 20
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24

8 12 16 20
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Fig. 9 MRAC, small spacecraft: aerodynamic paddle angles.

Small Spacecraft
The environmental perturbation torque model is given by

Eq. (30) with Ay = 8.6 X 10 ~ 5 = 5 . 7 x l O ~ 5 , Az =
4.3 x 10 ~ 4 , and Sz = 2.85 x 10 ~4 . Simulation characteristics
of the small spacecraft without momentum unloading are
shown in Fig. 4. It is seen that the secular term magnitude of
the momentum y component increases steadily. The objective
is to maintain this component bounded well within the satura-
tion limits of ± 5 N-m-s while not adversely affecting the
other H components or attitude angles. Note, however, that
attitude angle pointing requirements are assumed to be accom-
modating to the attitude angle variations commanded by the
gravity gradient unloading portion of the MUCS. The effect
of three-way adaptive unloading for the small spacecraft is
illustrated in Figs. 5-9, which depict wheel momentum plots,
adaptive parameters, magnetic control moments, attitude off-
set angle requests, and paddle turn angles, respectively. The
adaptive parameter matrices K_M> KG> and KA are presented in
terms of the root sum square of all of their elements. The
atmospheric density model given by Eq. (31) is set at 10% of
sunspot maximum values, which is a near- worst case setting
for aerodynamic paddle torque control.

From Figs. 5 and 6 it is clear that momentum magnitude
increases in y component until not quite 15 h, when the dead
zone is exceeded, signified by the changing of KM, K_G, and
KA . Adaptation continues for less than 2 h more, after which
the y component goes back into the dead zone for the duration
of the run. When adaptation is not taking place, KM> KG> and
K_A remain constant. The three magnetic control commands,
plotted in Figs. 7-9, begin responding when the momentum
violates the dead zone boundary. The attitude offset requests
shown in Fig. 8 are seen to fit properly within the db 10-deg
stop limits. The magnetic control moments (Fig. 7) are well
within their limits of ± 50 amp-m2 (see Table 1). The presence
of the y component of magnetic moment control at identically
zero is the result of the choice of the nine adaptive parameter
elements, discussed previously. The configuration chosen,
based on the requirement to provide unloading in all three
axes, contains no elements in the second row of KM. Paddle
angles (Fig. 9) are also well within their stop values.
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Fig. 11 MRAC, large spacecraft: momentum.

Large Spacecraft
The environmental perturbation torque model is given by

Eq. (30) with Ay = - 8.5 x 10~3, Sy = - 2.75 x 10~3, Az =
4.25 x 10~3, and Sz = 1.375 x 10~3. Orbit simulation results
of the large spacecraft without momentum unloading are
shown in Fig. 10. Figure 10 shows the secular term of the y
component magnitude of wheel momentum steadily increas-
ing. Adaptive momentum unloading applied to the large
spacecraft is illustrated in Fig. 11. The atmospheric density
model supporting aerodynamic paddle torque control uses
average sunspot activity values for the 370-km altitude.17 This
results in the parameters of Eq. (31) being pa = 3.25 x 10~ 12

kg/m3 and pc = 7.23 x 10~ 12 kg/m3. Figure 11 shows reaction
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Fig. 12 MRAC, large spacecraft, large disturbance: momentum.

wheel momentum variations of a similar pattern as observed
for the small spacecraft. The y component rises out of the
dead zone, prompting adaptation. The adaptation lasts less
than one orbit's duration, after which the momentum tends
toward a periodic steady state within the dead zone.

A further orbit simulation with the large spacecraft is made
with a more persistent external perturbation function, given
by the following:

Tabx = 0

Taby = 0.0055 sinojo* + 0.017

= 0.00275 sinwof + 0.0085 (32)

Equation (32) represents a perturbation torque having a maxi-
mum absolute value of twice the torque of the previous cases
and constant terms more than six times higher. Thus the
secular term of wheel momentum is driven at a much higher
rate. The density model supporting aerodynamic torque un-
loading is given the parameters of maximum sunspot activity,
delineated in conjunction with Eq. (31), in accordance with
the very high perturbation torque. Figure 12 depicts the results
of the large spacecraft orbit simulation with high perturba-
tions. Comparison of Figs. 11 and 12 reveals the more power-
ful tendency of the y component of H to rise unconstrained
when subject to a much higher secular external perturbation.
It was found that the adaptive system nonetheless reacts with
the familiar pattern of a relatively brief period of adaptation
followed by convergence of momentum to a tightly bound
steady state. The control effort responses for both large space-
craft cases were found to be very similar in character to the
small spacecraft cases. The requirement of ± 1800 amp-m2

for magnetic control, ± 10 deg for attitude offset control, and
± 30-deg excursions for aerodynamic control were all met.

Conclusion
Three environmental torques were used in combination for

the first time in an adaptive control law that demonstrated
maintenance of momentum within desired bounds. The
method was simulated on two separate model spacecraft pos-
sessing widely different mass properties. The judicial use of
the dead zone was shown to make adaptive control an appeal-
ing method for momentum unloading. The reaction wheel
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momentum was allowed to fluctuate within a subset of its
saturation limits (the dead zone), only requiring control ad-
justment when violating that subset. It was shown that the
adaptation of system parameters was so efficient that in each
simulation, the wheel momentum did not violate the dead
zone after the initial episode of adaptation lasting less than
one orbit's duration. It is regarded that these results fulfill the
goal of this study of concept validation of the adaptive control
technique.

Future studies may focus on potential improvements to the
presented techniques. A multisource adaptive unloading con-
troller could benefit from a feature to prescribe the ratio of
incorporation of the various sources. Also, alternate forms of
the adaptive control algorithm could be explored, such as the
introduction of auxiliary signals or filters to guarantee greater
robustness features. In addition, future studies devoted to
specific missions will require that the algorithm be simulated
using the most accurate available gravitational, aerodynamic,
and magnetic field models. Since spacecraft momentum fluc-
tuates slowly, large time steps are feasible for the implementa-
tion of the adaptive unloading scheme, which would facilitate
its incorporation into an onboard processor. Sizing and timing
studies of such a processor are further tasks for the future.
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